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a b s t r a c t

In this paper we explore fuzzy string matching in an automatic ticket classification and processing
system. We compare performance of the following string similarity algorithms: Longest Common
Subsequence (LCS), Dice coefficient, Cosine Similarity, Levenshtein (edit) distance and Damerau
distance. Through optimisation, we accomplished a 15% improvement in the ratio of false positives
to true positive classifications over the existing approach used by a customer support system for
free customers. To introduce greater safety; we compliment fuzzy string matching algorithms with
a second layer Convolutional Neural Network (CNN) binary classifier, achieving an improved keyword
classification ratio for two ticket categories by a relative 69% and 78%. Such an approach allows for
classification to only be applied where a desired level of safety achieved, such as in instances where
automated answers.

© 2020 ISA. Published by Elsevier Ltd. All rights reserved.
w

1. Introduction

A key benefit of using an automated ticket classification sys-
em in a customer support context is the ability to introduce
utomated responses to improve the customer experience by de-
reasing customers wait times. The reduced ticket response time,
ogether with a qualitatively reliable reply can reduce costs of the
usiness and raise the overall customer satisfaction. Our original
esearch was motivated by a need of accuracy and computation
ime improvements. The algorithm used prior to our research was
ased on the edit distance calculation. In [1] we showed that the
osine similarity measure performed better than other algorithms
nd ran at an improved computational performance (O(n + m)
ifficulty instead of O(n ∗ m) for two strings n and m). Driven by
eeds to expand our ticket classification system to areas where
greater degree of certainty was required before classification,
e introduced a few novel innovations. We include Name Entity
ecognition to identify and sanitise meta-information like email
ooters, define a modified implementation of the Cosine similarity
lgorithm to account for numeric values in strings and we define
novel approach using Convolutional Neural Networks for safety-
ngineering for fuzzy string matching. We provide comparative
nalysis for the safety-engineering strategy and comparative data
or string similarity. To the best of our knowledge, no other
pproaches for safety-engineering string similarity algorithms.
ur improved system presented in this paper is made of three
omponents:
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1. a database with replies to the most frequent customers’
enquiries,

2. a string similarity based classifier,
3. a new binary classifier based on neural networks.

In Section 2 we introduce the theoretical description of the
chosen string similarity algorithms with the focus on the edit
distance and the cosine similarity. The other algorithms used in
this paper are discussed in more details in our original work [1].
We further introduce theoretical principles behind neural net-
works, which is concluded with a summary of a related work.
In Section 3 we present the two classification models and in Sec-
tion 4 we describe the dataset used for our studies, together with
the data sanitisation used prior to neural network training and
application. In Section 5 we focus on the improvements accom-
plished by using the chosen string similarity algorithm [1] and
by introducing a second layer classification system (the binary
classifier). The research is summarised in Section 6.

2. Current knowledge

2.1. Fuzzy String matching

Fuzzy string matching is a technique used to find approximate
matches between two strings. Algorithms may be divided into
two categories due to the feature they measure:

• similarity algorithms: the match is found if S(X, Y ) ≥ tS ,
• dissimilarity algorithms: the match is found if D(X, Y ) ≤ tD,

here tS/D is a string similarity/dissimilarity threshold, S(X, Y )
nd D(X, Y ) are the similarity and dissimilarity functions, X and
eering of fuzzy string matching algorithms. ISA Transactions (2020),
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are the two strings in question. A string of a size k is a sequence
of characters (x1x2 . . . xk) and it can be divided into groups of
characters or words called n-grams. An n-gram based on single
characters is simply a substring of a length n from the original
string [2]. A string containing multiple words can also be divided
into n-grams made of phrases or words, instead of characters.

2.1.1. The edit distance
The edit distance (known also as the Levenstein distance) is a

special case of a unigram (an n-gram of a unit size) distance [3],
where strings are tokenised into n-grams made of characters. The
distance is equal to the minimum number of elementary edit
operations, necessary to transform one string into another. De-
pending on a definition and treatment of elementary operations,
the Levenstein distance has different variations. In the classical
edit distance problem, a set of elementary edit operations for two
strings (|X | ̸= |Y |) X → Y contains:

• a change operation, if X ̸= ∅ and Y ̸= ∅;
• a delete operation, if Y = ∅;
• an insert operation, if X = ∅.

Hence, the edit distance is the minimal number of changes, dele-
tions, and insertions needed to transform the string X into the
string Y .

The authors of [3] defined the minimum distance d between
strings X = (x1x2 . . . xk) and Y = (y1y2 . . . yl) divided into n-grams
of a size n:

dn(Γk,l) = min(dn(Γk−1,l) + 1, dn(Γk,l−1) + 1, (1)
dn(Γk−1,l−1) + dn(Γ n

k−n,l−n)),

where Γi,j = (x1 . . . xi, y1 . . . yj) is a pair of strings of size i and
j and Γ n

i,j = (xi+1 . . . xi+n, yj+1 . . . yj+n) is a pair of n-grams in the
two strings. The cost of the dynamic programming solution to this
problem is O(k · l).

As mentioned before, there are many variations of the edit
distance algorithm. In case where the above mentioned set of
elementary operations is enriched by adding a transposition of
two adjacent characters, the algorithms is called he Damerau–
Levenshtein distance [4]. The distance can be normalised to its
length L (the number of elementary edit operations), thus the
Normalised Levenshtein distance is the minimum value of the
weighted sum over L [5]. It can also be normalised to the sum
of stings’ lengths using the length of the longest string as a nor-
malisation constant, then it gets values from 0.0 to 1.0. Authors
of [6] defined a normalised Levenstein distance for the transition
X → Y :

dnorm(Γk,l) =
2 · d1(Γk,l)

α · (|X | + |Y |) + d1(Γk,l)
, (2)

where α is equal to a maximum value of elementary edit opera-
tion transforming string X to the null string, or the null string to
Y .

2.1.2. Cosine similarity
The Cosine Similarity [7] is a method which can measure a

similarity between two strings based on their similarity angle in
a multi-dimensional space. In this method, strings are tokenised
into n-grams of words or characters, where each unique n-gram is
a separate dimension. As a result, each text can be represented as
a vector in the multi-dimensional space. With vectors normalised
to unity [8], we get a cosine of the angle θ between them [7]:

s(X, Y ) =
U⃗(X) · V⃗ (Y )

|U⃗(X)||V⃗ (Y )|
= cos θ. (3)

The inner product in (3) is normalised with respect to vectors’
lengths, thus the final value does not depend on them. The closer
2

Fig. 1. A simplified NN architecture with one hidden layer and one output node.

to unity the more similar strings are. The computational cost of
this algorithm is O(k+l) but this approach has one significant dis-
dvantage — the similarity measure is not sensitive for ordering
f terms.

.2. Other algorithms

In the original research paper, next to the edit distance and the
osine similarity, we considered using the Dice coefficient [9] and
he Longest Common Subsequence [10] algorithms. Dice mea-
ures the similarity between two strings as the intersection of
he corresponding two sets of n-grams that make up two com-
ared strings and in LCS the similarity measure is the length of
he longest subsequence which is present in two strings. The
isadvantage of the Dice coefficient is its insensitivity to the
rdering of n-grams and the LCS is insensitive to a context. The
wo algorithms are described in more details in [1]. Both of them
ave as an advantage the computational time, which is O(k + l).

.3. Neural networks

Machine learning systems whose architecture was inspired
y the nervous system of the human brain are called Artificial
eural Networks (hereafter known as Neural Networks). Each NN
s made of an input layer, output layer, and one or more hidden
ayers. A simplified Neural Network (NN) architecture is shown
n Fig. 1.
Layers are made of so-called nodes, where each node in the

nput layer a(0) represent a feature from the training set (with the
xception of the bias node x0). Input nodes are connected with
idden layer nodes, and the transition from layer j to a layer j+1
s performed using weights Θ:
(j+1)

= g(Θ (j)a(j)), (4)

where g is the activation function. The output layer gives us an
activation of the last node, which is our desired answer. The NN
is made of three layers, the input layer is made of one bias unit
and 3 input nodes, the hidden layer has 4 nodes and one bias unit,
and the output layer gives as an output an activation of the final
node hΘ (x) = a(3).

The NN structure presented so far, where each subsequent
layer can be connected to its predecessor and no single process-
ing unit depends on its own output, is known as a feedforward

network [11]. In case of more complex architectures with more
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idden layers, the architecture type determines possible connec-
ions between nodes and node types. A neural network that has
nternal loops which can memorise their internal state is called a
ecurrent Neural Network (RNN) [12]. This feature makes RNN an
ery useful tool in studies of sequenced data (such as text, speech,
r videos).
A multi-layer architecture that was designed to image recog-

ition tasks is called Convolutional Neural Network (CNN). This is
type of a feedforward neural network that uses a mathematical
unction called convolution [13] to extract local features which
ater are combined to detect higher-order features with subse-
uent layers. With the growing popularity of word embeddings
o represent words in a multidimensional vector-space, CNNs
ecame a attractive method to extract high-level text features
rom their words or n-grams.

.4. Related work

There are many applications of fuzzy string matching or string
imilarity algorithms, and NN techniques in text classification
ystems. Similarity algorithms have applications in many cus-
omer support environments. [14] proposed an automated la-
elling system for bug trackers and customer support based on
heir recurrent neural network solution, where the text is to-
enised into vectors of words and sentences. [15] describes using
NLP based tool for a keyword extraction and mentions usage of
he Levenshtein distance for word matching, yet the study focuses
n the enhancement of the Machine Learning (ML) tagger with
Twitter model using previous customer service interactions.

16] uses word and character embeddings with neural models.
hey compare different linking methods with the fuzzy string
atching, which computes the Levenshtein Distance between

heir queries using support tickets. [17] describe their ticket
esolution system built using historical information of similar
vents. They propose two approaches to improve the traditional
-nearest neighbour (KNN) algorithm. First classify tickets as
rue or false and proposes resolution. The second enriches their
NN by enriching the algorithm with topic-level features, resolu-
ion information, top-level features and similarity measures from
etric learning, where in case of textual features they use the

accard index for the bag of words model [7]. They improve their
imilarity measurements using event and resolution historical
nformation. [18] showed that character-level CNN can be an
fficient tool for text classification. [19] present a combination
f convolutional and recurrent neural networks C-LSTM, where
he first one phrase-level features and their sequences are later
sed in the long short-term memory network (LSTM). Machine
earning and string similarity has been widely used in the text
lassification system, yet there has been very little existing work
omparing string similarity techniques or their configuration pa-
ameters when used in customer support automation together
ith neural network approaches as a second layer classification
ystem.

. Classification models

Our improved ticket classification model is divided into two
tages. The first stage follows our original idea of the ticket clas-
ification based on the keyword search using a string similarity
lgorithm. Successive a ticket submission, ticket’s text is scanned
n search for a keyword match. The second stage is applied only
n paid tickets and its goal is to assess the ticket’s text as either
nformative enough or not to make a successful classification.
oth stages are described in more detail in the following sections.
3

3.1. Keyword search based model

The model is made from a dataset of the most common ticket
categories, where each category has a set of characteristic key-
words. The ticket submission system allows customers to de-
scribe their enquiries in two main fields: subject and description
(also called a ticket’s body). The less popular way is to submit a
ticket via the email channel, in this case the subject is the email’s
title and the description is its content. The subject should contain
a short information of the existing difficulties thus it has a priority
in the keyword search.

Categories included in this analysis are Errors, Abuse, Crypto,
DNS, and Account (see [1] for descriptions). Their order is not
accidental. Keyword search prioritises the most unique categories
and rare keywords. The scan on the ticket’s string is performed in
windows of the keyword’s length and when the match is found
the algorithm stops the search. Once the category is set, the free
customer gets a prepared response. In case of paying customers,
only DNS and Errors tickets are automated and a safety check
ased on the binary classifier is applied.

.2. The binary classification model

This model is based on a binary classifier that was trained
sing spaCy’s [20] ensemble of a Convolutional Neural Network
CNN) and a bag-of-words model. We automate paid tickets for
wo categories (DNS and Errors), thus two separate classifiers
re trained. Prior to the machine learning training, the primary
eyword classification for each ticket has to be labelled by an
gent either as positive (the keyword classification was correct) or
egative (the keyword classifier misfired). The manual labelling is
onsidered to be very conservative because in case of ambiguities
n the ticket (e.g. one ticket was concerning more that one prob-
em) the ticket is labelled as negative. As this is a binary problem,
he default classification is based on a 50% score threshold. In our
pplication we want to be even more conservative, thus every
icket with the greater score smaller than 80% is tagged as unclas-
ified. As a result, paid tickets are automated if these conditions
re met: the ticket was triggered by a keyword belonging to a
iven category (DNS or Errors) and the binary classifier’s score
or a positive label is greater than 80%. Fig. 2 depicts obtained
onfusion matrices before and after neglecting tickets marked as
nclassified. The improvement achieved by the 80% requirement
s clearly visible. The same behaviour can be seen on Fig. 3. Many
ickets were misclassified as negative in the DNS category, this
as to be expected as many of the problems relating to DNS
re unique and difficult to predict, the 80% requirement lowered
he number of tickets misclassified as positive from 240 to 73
ut the price was the coverage of true positive matches. The
ame procedure for Error tickets reduced the number of tickets
isclassified as positive from 410 to 230 with a small cost in true
ositive classifications. We consider this to be sufficient for our
pplication.

. Data sample and processing

The first dataset used in our analysis is made of automated
ickets from our original research. Since tickets are changing
ith every new product release, the model also has to evolve.

n order to be consistent with the original paper, we collected
second dataset of tickets corresponding to the same period of

ime (between March and November 2018). The second dataset
as gathered with a restriction that the tickets should concern
ones with paid plans. The ticketing system requires the support
gent to adjust the classification to an accurate value prior to the
icket being closed. The distribution of categories chosen for this



M. Pikies and J. Ali ISA Transactions xxx (xxxx) xxx

t

s
s
a
n
F
N

l
c
s
U
s
e
g
A
F

d
a

d

Fig. 2. Confusion matrices for Errors tickets using 50% (left) and 80% thresholds.
Fig. 3. Confusion matrices for DNS tickets using 50% (left) and 80% thresholds.
Fig. 4. The distribution of categories in closed tickets in free (left) [1] and paid (right) zones. The left plot corresponds to 26 195 tickets and the right plot corresponds
o 38 884 tickets, all submitted between March and November 2018.
tudies is given in Fig. 4. The coverage is higher on the first data
ample (left chart) because this system was originally designed to
utomate tickets from free customers. The majority of paid tickets
ot covered by chosen categories belongs to: Billing (9.61%),
irewall (7.26%), General Question (5.01%), Caching (4.49%), and
etwork (3.58%).
Since the second layer classification is based on machine

earning techniques, a comprehensive data sanitisation is cru-
ial. Hence, prior to the binary classification, tickets have to be
anitised from technical information such as IP numbers, emails,
RLs, WHOIS [21] lookup outputs etc. In addition we tuned
paCy’s Name Entity Recogniser (NER) and used it for a footer
xtraction. In this procedure we look for entities such as names,
eographical locations, numbers etc. in the tickets’ description.
dummy example ticket with detected entities can be seen on

ig. 5.
With the tuned NER we expect an elevated named entity

ensity at the end of a ticket’s description in case of presence of
footer. We define the entity density as:

NE =
nNE

nwords
, (5)

where nNE stands for the number or named entities found and
nwords stands for the total number of words in the analysed text
(multi word entities are accounted as one). We start with the
footer size set to a maximum of 5 lines, at the end of the ticket.
The footer size is then decreased until the density reaches 30%,
if this does not happen we assume that there is no footer at
all. The 30% threshold was chosen using a named entity density
distribution of a subset of 2313 tickets from the paid dataset,
known to have footers. The clear separation in densities can be
seen on Fig. 6.
4

Fig. 5. Example ticket with fake data showing NER’s application with entities
detected.

Fig. 6. The named entity density distribution in tickets’ bodies and their footers.
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Fig. 7. The percentage of tickets triggered by keywords from the DNS category in the DNS (left) and Crypto (right) tickets [1]. Values correspond to 200 closed tickets
rom each category. For Cosine and Dice: n-gram size is equal to 2.
T
E

able 1
ntercession points of TP and 1-FP for tickets triggered on keywords from the
DNS’ category [1].
FP ticket category tS threshold

Crypto 0.87
Account 0.83
Abuse 0.74
Errors 0.83

5. Analysis

5.1. The keyword search classification

With the first dataset we measure the accuracy for chosen
tring similarity algorithms: Cosine, Dice, Damerau, Longest Com-
on Subsequence, and Levenshtein (edit distance) [1]. In the
ccuracy measurements we look for keywords from the DNS cat-
gory, and the search is performed on tickets from the two most
ommon (see Fig. 4) categories: DNS (true positive (TP) matches)
nd Crypto (false positive (FP) matches). Two strings are matched
f the minimum similarity threshold of 80% (or the maximum
issimilarity threshold of 20%) is fulfilled. In order to save the
omputing time, all five algorithms analyse only the first 200
haracters of each ticket, and we randomly choose a small subsets
f tickets (200 tickets for each category). The measurements are
erformed for different n-gram sizes for Cosine and Dice algo-
ithms. These two algorithms are not sensitive for the ordering
f words, hence the false positive rate for tickets matched with
-gram’s of size n = 1 is not acceptable [1]. The reason for that

is the fact that the algorithms sometimes can find a match with
unrelated strings based only on their letter composition, e.g. ‘dns
odification pending’ would have 84.7% Cosine similarity with ‘p
nd now the domain settin’. This behaviour disappears when we
ncrease the n-gram size by one. Using higher n-gram sizes does
ot introduce significant improvement, thus we chose to work
ith bigrams. The performance of all considered algorithms is
hown on Fig. 7. The best (smallest) ratio of false positive to
rue positive matches (0.24), with the smallest false positive rate
21%) is observed for the Cosine algorithm, where the Dice algo-
ithm had approximately the same FP/TP ratio with a higher false
ositive rate of 21.5%. The same ratio for the original algorithm
Levenshtein) is equal to 0.29, and the false positive rate is equal
o 26.5%. Damerau and Damerau and LCS algorithms had false
ositive rates of 26.5%, 32.0% and 26.5%, with FP/TP ratios of 0.29
nd 0.34, respectively [1].
In the next step, we perform threshold scans in order to check

or a better minimum Cosine similarity (tS) requirement. The
oint where the percentage of ‘Crypto’ tickets not classified as
DNS’ (1-FP) meets the TP ratio is equal to the best similarity
hreshold that distincts between the ‘Crypto’ category (tSCrypto )
rom our most common category (‘DNS’). The same ‘DNS’ key-
ords searches are performed for other categories (see Table 1
5

able 2
xecution time per character for chosen algorithms.
Algorithm Execution time, [s]

Cosine 0.0775 ± 0.0019
Dice 0.0722 ± 0.0018
Damerau 0.6159 ± 0.0208
LCS 0.5460 ± 0.0193
Levenshtein 0.2525 ± 0.0085

for results). The obtained values are used to estimate the optimal
working point as a weighted sum:

tSopt =

∑
i

wi · tSi/
∑

i

wi, (6)

where weights are equal to categories’ contribution to the overall
fraction of tickets (Fig. 4 (left)). As a result we obtain the optimal
similarity threshold of tSopt = 0.84.

5.1.1. Execution time improvements
For a subset of matched DNS tickets’ we measure execution

times of the aforementioned algorithms. We use their keywords
and their test strings known to have a match, to measure only
the part of the programme which compares the similarity (omit-
ting looping through a ticket to find a match). Our study shows
that the Cosine and Dice algorithms are faster by an order of
magnitude that Damerau, LCS and Levenshtein. The results are
summarised in Table 2.

The median length of a ticket’s body from this subset is 221
characters (prior to string sanitisation), where the maximum
length is 20 026 and the minimum being 18. Assuming the
above-mentioned median as a ticket length, and the worst case
scenario, when no technical or unnecessary information (like an
email footer) is found in a ticket and the keyword is at the end
of the ticket’s body; Damerau, LCS, and Levenshtein algorithms
would have 136.11, 120.67, and 55.80 s ticket processing time,
respectively. Under the same conditions, the improvement in
execution times by using Cosine and Dice is clearly seen: the two
algorithms would take less than 20 s to process an average ticket
(17.13 s for Cosine and 15.96 s for Dice). Our requirements are
that time spent on a single ticket’s keyword search should not be
greater than one minute. Cosine, Dice and Levenshtein algorithms
fit our criteria, but the first two algorithms are more than three
times faster than the Levenshtein. The difference between Dice
and Cosine is very small, with Dice being faster, yet our previous
studies shown better FP/TP ratio with smaller fraction of false
positives for the Cosine algorithm (as described in Section 5.1).
Thus, we believe that the Cosine algorithm is the best choice as it
gives us a good accuracy with the smallest ratio of false positive
matches for ticket classification and a small processing time.

5.2. Binary classification as a safety check

With the best working point estimated in previous steps we
now consider application of our model on the tickets received
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Fig. 8. The percentage of tickets triggered by keywords from the DNS category in the DNS (left) and Crypto (right) tickets. For Cosine and Dice: n-gram size is equal
o 2.
Fig. 9. The percentage of tickets triggered by keywords from the Errors category in the Errors (left) and DNS (right) tickets. For Cosine and Dice: n-gram size is equal
o 2.
able 3
rue (TP) and false (FP) positive matches, and their ratio. ‘DNS’ and ‘Crypto’
ickets matched with the ‘DNS’ category.

Keyword classification Binary classification

Algorithm TP, [%] FP, [%] FP/TP TP, [%] FP, [%] FP/TP

Cosine 80.12 22.59 0.2820 25.54 1.72 0.0674
Dice 80.41 22.67 0.2820 25.54 1.72 0.0674
Damerau 81.09 25.03 0.3087 25.40 1.77 0.0697
LCS 82.46 28.21 0.3421 25.83 2.02 0.0780
Levenshtein 80.99 25.07 0.3095 25.44 1.77 0.0697

Table 4
True (TP) and false (FP) positive matches, and their ratio. ‘Errors’ and ‘DNS’
tickets matched for the ‘Errors’ category.

Keyword classification Binary classification

Algorithm TP, [%] FP, [%] FP/TP TP, [%] FP, [%] FP/TP

Cosine 53.26 1.95 0.0366 36.82 0.49 0.0132
Dice 53.04 1.95 0.0368 36.71 0.49 0.0133
Damerau 52.72 2.24 0.0425 36.71 0.49 0.0133
LCS 53.15 3.7 0.0697 36.82 0.49 0.0132
Levenshtein 52.83 2.34 0.0443 36.71 0.49 0.0133

from paying customers. The reason for the distinction here is that
the second group of customers has an access to a larger product
range, thus their enquires may differentiate.

To verify our original studies, the same accuracy measure-
ents are performed for DNS and Errors categories (we automate

only server error codes), and their results can be seen on Figs. 8
and 9. Since the model was tuned to other types of tickets, we
can see a drop in the percentage of tickets matched with the
DNS category. Some of the missed customers’ problems cannot
be automated because they require a manual debugging from a
human agent. Hence, expanding our model with new keywords
is not a solution. In order to get the best possible false positive to
true positive ratio, we introduce the binary classifier. The classi-
fier is applied on top of the keyword classification. As mentioned
in Section 3.2, the classifier is trained using labels supplied by our
agents. The manual labelling was rigorous, thus after requirement
on the binary tag to be positive we lose on the TP rate, but the
TP/FP ratio gets better with a very small FP value. For all results
see Tables 3 and 4.

It is important to notice that final values in Table 4 are ap-

proximately the same for all algorithms but we choose to stay

6

with our choice of the Cosine similarity algorithm as it proved to
be accurate and significantly faster than other algorithms (with
an exception of the Dice algorithm). The keyword search step
which uses the string similarity algorithm is shared between free
and paid tickets. Free tickets do not have the binary classifier
safety check (to maximise the classification coverage) thus we
chose Cosine over Dice because the resulting FP/TP ratio is smaller
for the Cosine algorithm (as described in Section 5.1). It is also
important to mention that in the final version of our system for
paid tickets we choose to modify the behaviour of our string
similarity algorithm to further reduce the amount of misclassified
tickets related to similarity being applied to numeric values. In
case of keywords which contain numbers the requirement on
84% similarity might not be enough. More than 50% of keywords
belonging to the Errors category includes number that can differ
with only one digit, e.g. ‘error 503’ could be match with a ticket
containing ‘error 502’ with the 85.71% cosine similarity. This is
an important issue because these two error codes should trigger
different automatic replies. For this reason we require that all
keywords that contain digits have to be matched with the equal-
ity operator (as can be seen in the last if statement in Fig. 10). This
forms the modified Cosine Similarity Algorithm, which accounts
for the fact that numeric values require equality even where
text components of the string should be matched with a fuzzy
approach. With the improved Cosine algorithm and the second
layer binary classification we obtained the true positive to false
positive ratio of 0.0670 for the ‘DNS’ category and 0.0132 for the
‘Errors’ category.

6. Summary and conclusions

This paper presents a novel approach for using binary classi-
fication as a mechanism for safety engineering with fuzzy string
matching algorithms together with comparison of various chosen
algorithms using a keyword search approach. The false positive
to true positive ratios have been measured using two layers of
classification. The measurements have been enriched in the exe-
cution time comparison for the string similarity algorithms. We
have estimated an optimal configuration for the Cosine similarity
approach, tuned to our most frequent ticket category among
free customers. The improvement was estimated using the afore-
mentioned ratio, where false positive matches were taken from
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Fig. 10. The modified Cosine Similarity Algorithm of two non-empty strings X and Y .
ur second most popular ticket category. We have achieved a
erformance improvement of a relative 15.0% for free tickets. The
verage execution time improvement per character is 0.0775 s.
ith the new, faster algorithm we are able to use the full infor-
ation provided by a customer (without restricting the number
f characters to be processed). We showed that the second layer
lassifier reduced significantly the false positive to true positive
atio: 0.0670 for the ‘DNS’ category and 0.0132 for the ‘Errors’
ategory. This corresponds to a relative ratio improvement of 78%
nd 69% for the ‘DNS’ and ‘Errors’ categories respectively. Our

conclusions are the following:

1. n-gram based algorithms (with n > 1) like Dice and Cosine
outperform Levenshtein, Damerau, and LCS algorithms;

2. a neural-network based binary classifier works well as a
second layer safety check for ticket classification;

3. the decrease in false positives was greater than the de-
crease in true positive matches when the neural network
based binary classifier is used.

Our innovative approach to a multi-layer classification system
using the modified Cosine algorithm and a neural-network based
binary classifier reduced a fraction false positive classifications to
a negligible level. Whilst using a second layer classifier results in
7

a drop in the classification coverage, we find it is an acceptable
trade-off for a greater reduction in classification false positives.
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