
String similarity algorithms for a ticket classification system

Malgorzata Pikies1 and Junade Ali2

Abstract— Fuzzy string matching allows for close, but not
exactly, matching strings to be compared and extracted from
bodies of text. As such, they are useful in systems which
automatically extract and process documents. We summarise
and compare various existing algorithms for achieving string
similarity measures: Longest Common Subsequence (LCS),
Dice coefficient, Cosine Similarity, Levenshtein distance and
Damerau distance. Based on previously classified customer
support enquiries (tickets), we considered the effectiveness of
different algorithms and configurations to automatically iden-
tify keywords of interest (such as error phrases, product names
and warning messages) in instances where such key phrases
are misspelled, copied incorrectly or are otherwise differently
formed. An optimal algorithm selection is made based on
novel studies of the aforementioned similarity measures on text
strings tokenised into characters. Such analysis also allowed for
an optimum similarity threshold to be identified for various
categories of enquiries, to reduce mismatched strings whilst
allowing optimal coverage of the correctly matched key phrases.
This led to a 15% improvement in the ratio of false positives
to true positive classifications over the existing approach used
by a customer support system.

I. INTRODUCTION

Maintaining a high customer satisfaction benchmark is one
of the main priorities of every company, and a customer
support team is often the primary frontier for customers to
contact a business. In order to provide the best customer
service, agents have to prioritise tickets, reply quickly and
accurately. With a growing customer base, the average wait-
ing time for a reply can elongate. Classifiers based on string
matching algorithms can shorten a ticket response time,
hence help with agents’ performance and reduce costs of
the business. In practice it can be accomplished by using
an automatic classification system linked with a database
of replies to the most frequent enquiries or run technical
diagnostics based on the error information provided by a
customer. A system like that can immediately (subject to
the text processing time) reply to tickets, which can reduce
workload of customer support agents.

The purpose of this paper is an introduction to mechanisms
behind the chosen string similarity algorithms. Given two
strings (sequences of characters) X and Y , the difficulty
of finding a quantity to measure the relationship between
them comes down to two things. One is finding the correct
similarity function S(X,Y) and the second is finding a
threshold tS/D. Based on these values, two strings can be
classified as

1Malgorzata Pikies is with Cloudflare, London, United Kingdom
malgorzata@cloudflare.com

2Junade Ali is with Cloudflare, London, United Kingdom
junade@cloudflare.com

• similar: S(X,Y) ≥ tS or D(X,Y) ≤ tD,
• different: S(X,Y) < tS or D(X,Y) > tD,

where D(X,Y) is a string dissimilarity function.

II. CURRENT KNOWLEDGE

There are numerous examples of fuzzy string matching
or string similarity algorithms being used in customer sup-
port environments for extracting relevant information. [1]
proposed an automated labelling system for bug trackers
and customer support. They describe their recurrent neural
network solution, where the text is tokenised into vectors
of words and sentences. [2] describes using a Natural Lan-
guage Processing (NLP) based tool for a keyword extraction
and mentions usage of the Levenshtein distance for word
matching, yet the study focuses on the enhancement of the
Machine Learning (ML) tagger with a Twitter model using
previous customer service interactions. [3] uses word and
character embeddings with neural models. They compare
different linking methods with the fuzzy string matching,
which computes the Levenshtein Distance between their
queries using support tickets. Despite using approaches for
string similarity, there has been very little existing work
comparing string similarity techniques or their configuration
parameters when used in customer support automation.

String classification systems has been studied to label
and understand a variety of text strings. Prior to any string
analysis one has to decide on the text tokenisation. A string
of text can be divided into items, such as words, phrases,
letters etc. Items can be used to create n-grams. A set of
all strings of an integer length n, in a finite alphabet Σ is
denoted by Σn. An n-gram (sometimes called a shingle or
a q-gram) based on letters is simply an any string from Σn

[5]. In practice, a sequence of n-grams is created from a
text of interest (see Tab. I for examples). Once strings are
divided into substrings, the measurement of their similarity
is possible.

To the best of our knowledge, there exist a gap in the
literature that we want to fill. This paper is the first one to
compare performance of different string similarity algorithms
for a keyword extraction using test strings tokenised into
characters.

TABLE I
n-GRAM EXAMPLES FOR A STRING ”ALAMAKOTA” TOKENISED INTO

LETTERS.

Name n n-grams
unigram 1 (a, l, a, m, a, k, o, t, a)
bigram 2 (al, la, am, ma, ak, ko, ot, ta)
trigram 3 (ala, lam, ama, mak, ako, kot, ota)

978-1-7281-0521-5/19/$31.00 ©2019 Crown

2019 6th International Conference on Control, Decision and
Information Technologies (CoDIT’19) | Paris, France / April 23-26, 2019

-36-

A. Longest Common Subsequence

The Longest Common Subsequence (LCS) problem con-
cerns finding the longest subsequence which is present in
two strings [6]. Formally, a sequence (xi1xi2 ...xip) is a
subsequence of X = (x1x2...xk) if ∀j ∈ {1, ..., p} : ij ∈
{1, ..., k}, where i1 < i2 < ... < ip is an increasing
sequence of indices [4]. The LCS can be generalised into the
n-gram similarity measure. The recursive n-gram similarity
between X and Y = (y1y2...yl) is defined as [7]:

sn(Γk,l) = maxi,j(sn(Γk−1,l), sn(Γk,l−1), (1)
sn(Γk−1,l−1) + sn(Γn

k−n,l−n)).

Γn
i,j = (xi+1...xi+n, yj+1...yj+n) and Γi,j =

(x1...xi, y1...yj) are pairs of strings of length n, and
i and j, respectively. If both strings contain exactly one
n-gram:

sn(Γn
n,n) = sn(Γn

0,0) =

{
1, if ∀1≤u≤nxu = yu

0, otherwise.
(2)

If one of the strings is empty then the similarity is equal to
zero. When n = 1, the n-gram similarity problem becomes
LCS [7].

The brute-force LCS algorithm, which checks every pos-
sible subsequence of X and compares it with Y has expo-
nential time O(2k · l). There exist a tabular solution [8] to
this problem (shown on Fig. 1) and its cost is O(k · l).

The major flaw of the LCS similarity is its insensitivity to
a context, because it only pays attention to characters that are
part of the searched sequence. It can also be an advantage
in case of common human spelling mistakes. In this paper,
the measurement using the LCS algorithm is performed
as a distance, where the longest common subsequence is
normalised to the length of the longer string:

dn = 1− sn/max(k, l). (3)

B. Dice coefficient

The similarity of two strings X and Y can be quantified
by the intersection of the corresponding two sets of n-grams.

INPUT: two strings X , Y
OUTPUT: T (K,L)

K ← length(X) + 1
L← length(Y) + 1
T ← table K × L of zeros
for i← 1,K do

for j ← 1, L do
if X(i− 1) = Y (j − 1) then

T (i, j)← T (i− 1, j − 1) + 1
else

T (i, j)← T (i, j − 1), T (i− 1, j)
end if

end for
end for

Fig. 1. Dynamic Programming implementation for the Longest Common
Subsequence problem for two non-empty strings X and Y .

The context sensitive approach is using the Dice coefficient
[7], which is the ratio:

JD(X,Y) = 2 · |n-grams(X) ∩ n-grams(Y)|
|n-grams(X)|+ |n-grams(Y)|

, (4)

where the nominator is the number of n-grams shared be-
tween X and Y , and the denominator is the total number
of n-grams in both strings. E.g. in case of trigrams (n = 3),
sets would be PX = {x1x2x3, x2x3x4, .., xk−2, xk−1, xk}
and PY = {y1y2y3, y2y3y4, ..., yl−2yl−1yl} .

The solution to this problem is shown on Fig. 2. Sets of
n-grams can be calculated by external function with cost
O(k) for X and O(l) for Y . The total cost of the algorithm
is O(k + l) .

Depending on the size of n-grams, the algorithm might
have problems finding similarity between strings that are
alike. In addition to that, the order of n-grams is not relevant
thus the similarity might be equal to unity for different strings
with the same sets.

C. Cosine Similarity

The Cosine Similarity [9] is a common vector-based
method, where each expression (e.g. it can be a word or
a letter) is a separate dimension. A multi-dimensional space
is created, and as a result each text can be represented as
a vector in that space. The similarity between two vectors
can be measured as a distance between them. However, this
particular approach is slightly faulty because two similar
strings can be labelled as different due to their vectors lengths
[9]. A way to get rid of this effect is to normalise vectors
to unity [10] as can be seen on Fig. 3. The way to do that
is to simply calculate the cosine between these two vectors
[9], defined as:

s(X,Y) =
~U(X) · ~V (Y)

|~U(X)||~V (Y)|
= cosθ, (5)

INPUT: two strings X , Y
OUTPUT: 2 · I/L
PX ← n-grams(X)
PY ← n-grams(Y)
U ← empty set
I ← 0
L← length(PX) + length(PY)
for all P in PX do

U ← U ∪ {P}
end for
for all P in PY do

U ← U ∪ {P}
end for
for all P in U do

if P in PX and P in PY then
I ← I + 1

end if
end for

Fig. 2. The similarity of two non-empty strings X and Y calculated as a
Dice coefficient.

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -37-

x1

x2

x3

~U

(x1, x2, 0)

Fig. 3. A unit sphere as an envelope of the vector space and a vector ~U(X)

normalised to the [x1, x2, 0], where
√

x2
1 + x2

2 = 1. The third component

of the vector ~U is equal to zero for simplicity.

where θ is the angle between the two vectors corresponding
to two strings. The inner product in (5) is normalised with
respect to vectors’ lengths, thus the final value does not
depend on them.

The implementation of the algorithm dedicated to n-grams
is shown on Fig. 4 and its cost is O(k + l).

The cosine function is equal to unity for two identical
(unit) vectors, and −1 for two opposite vectors. While
searching for the matching strings, one looks for the highest
possible cosine similarity value. The biggest flaw of this
algorithm is the fact it is not sensitive for ordering of terms.

INPUT: two strings X , Y
OUTPUT: C/(

√
LX ·

√
LY)

GX ← profile(X)
GY ← profile(Y)
C ← 0
for all V,M in GX do . If GX is shorter than GY

C ← C + V ·GY [M]
end for
LX ← 0
LY ← 0
for all V in GX do

LX ← LX + V 2

end for
for all V in GY do

LY ← LY + V 2

end for

Fig. 4. The Cosine Similarity of two non-empty strings X and Y .

D. The edit distance

The edit distance (Levenstein) is just a special case of
the n-gram distance in case of n = 1 [7]. The difference
between definitions of n-gram similarity and distance is very
subtle. The minimum distance is defined as follows:

dn(Γk,l) = min(dn(Γk−1,l) + 1, dn(Γk,l−1) + 1, (6)
dn(Γk−1,l−1) + dn(Γn

k−n,l−n)).

In case where both strings have exactly one n-gram, the
distance is defined as:

dn(Γn
n,n) = dn(Γn

0,0) =

{
1, if ∀1≤u≤nxu 6= yu

0, otherwise.
(7)

When there is only one complete n-gram in either of the
strings:

dn(Γk,l) = 1 if(k = l ∧ l < n) ∨ (k < n ∧ l = n). (8)

The problem is to find the minimum number of elemen-
tary edit operations, necessary to transform one string into
another. Depending on the definition and treatment of el-
ementary operations, the Levenstein distance has different
variations.

In the classical edit distance problem, the elementary edit
operation for two strings (|X| 6= |Y |) X → Y is defined as:

• a change operation, if X 6= ∅ and Y 6= ∅;
• a delete operation, if Y = ∅;
• an insert operation, if X = ∅.

Hence, the edit distance is the minimal number of changes,
deletions, and insertions needed to transform one X into Y .

The algorithm solving this problem is shown on Fig. 5.
The cost of this algorithm is O(k · l).

The number of edits does not always do us justice, as the
distance is not normalised [11] (3 edits in a string made of
3 characters to the same number of edits in a string made
of 10 characters). The distance can be normalised to its
length L (the number of elementary edit operations), thus

INPUT: two strings X , Y
OUTPUT: GX(len(Y))

GX ← [0, 1, 2, ..., length(Y)]
GY ← [0]× length(Y)
for I in [0, 1, ..., length(X)] do

GY (0)← I + 1
for J in [0, 1, ..., len(Y)] do

C ← 1
if X(I) = Y(J) then

C ← 0
end if
GY (J + 1) ← min(GY (J)) + 1, GX(J + 1) +

1, GX(J) + C)
end for
GX , GY = GY , GX

end for

Fig. 5. The Levenshtein distance of two non-empty strings X and Y .

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -38-

the Normalised Levenshtein distance is the minimum value
of the weighted sum over L [12]. It can also be normalised
to the sum of sequences’ lengths(|X| and |Y |) or using the
length of the longest string as a normalisation constant, then
it gets values from 0.0 to 1.0. Authors of [11] defined a
normalised Levenstein distance for the transition X → Y :

dnorm(Γk,l) =
2 · d1(Γk,l)

α · (|X|+ |Y |) + d1(Γk,l)
, (9)

where α is equal to a maximum value of elementary edit
operation transforming string X to the null string, or the
null string to Y .

When a transposition of two adjacent characters is consid-
ered as an addition to the above-mentioned edit operations,
the distance is called the Damerau-Levenshtein distance [13].

III. CHOOSING AN OPTIMAL ALGORITHM

The Levenshtein algorithm was used in the existing clas-
sification system, with the distance normalised to the length
of the string. When a ticket is submitted, our algorithm
scans strings taken from ticket’s subject (a title) and body (a
message) in order to find a match with one of the keywords
included in our model. A scan is performed in windows of
the keyword’s length. The maximum edit distance of 0.2 is
allowed for the majority of keywords, exceptions are client
and server error codes [14] where we require an exact match.
When the match is found the algorithm stops the search.
In order to save the computing time, the algorithm takes
only the first 200 characters of the ticket. Our goal is to
find a time efficient and accurate algorithm that performs
as well as Levenshtein. The algorithm should allow us to
process the full text from a ticket (without restricting it to
200 characters). Ideally we would like to obtain the best
match rate with the smallest possible false positive match
ratio (misclassified tickets). Hence, algorithms are compared
based on their ability to properly classify tickets but not
necessarily on the same keywords.

A. The model

With the variety of products, defining an accurate model
which corresponds to the customers’ most common issues is
essential. Categories included in our model are listed below,
together with short explanations and example keywords used
to trigger them on tickets.

1) Errors: This category corresponds to two types of
common HTTP status codes: client and server errors. Tickets
that contribute to this category can be triggered if one of
the following example keywords is found: ’error 403’, ’403
error’, ’Forbidden’, ’error 502’, ’502 error’, ’Gateway Error’,
’Internal Server Error’ etc.

2) Abuse: This category includes tickets concerning
banned domains and can be triggered for example by one of
these keywords: ’code 1097’, ’zone banned’, ’error 1097’.

3) Crypto: Problems concerning encrypting traffic with
SSL [15] go to this category. Example keywords are: ’ssl’,
’redirect loop’, ’mixed content’, ’certificate’, ’https’

4) DNS: Issues related to setting up domain name servers
[16] are gathered in the DNS category and can be triggered
by keywords like ’cname setup’, ’website not active’, ’dns
pending’, ’name server’ etc.

5) Account: Customers having problems with their two
factor authentication, submit tickets that are categorised as
’account’ and usually include one of the following keywords:
’2fa’, ’two factor authentication’, ’mfa’, ’google authentica-
tor’.

B. Dataset

The used dataset corresponds to closed English tickets
submitted between March and November 2018. The ticket
submission system allows customers to tag each question to
a specific category and requires the support agent to adjust
this to an accurate value prior to the ticket being closed.
Categories included in our model contribute significantly to
the overall pool of tickets, which can be seen on Fig. 6.
Other categories include mostly general questions and billing
issues, and some less popular categories which are going to
be implemented into our model in the future.

C. Accuracy measurements

For each ticket from a given category five algorithms were
tested. Algorithms were required to have at least 0.8 simi-
larity (Dice, Cosine) or 0.2 distance (Levenshtein, Damerau,
LCS). As mentioned previously, some of the keywords that
belong to the ’Errors’ category were required to have an
exact match. These keywords include word ’error’ together
with an error number, e.g. ’error 500’ or ’500 error’. For
Cosine and Dice algorithms, different n-gram sizes were
tested (strings were divided into letters). A match means that
either in the ticket’s body or in its subject one keyword from
the corresponding category in our model was found, but it
was not necessarily the same word for each algorithm. Empty
spaces were omitted for the calculation of Cosine and Dice
similarities.

For the n-gram based algorithms, the results were sus-
piciously high (100 %) for the smallest n-gram size. It
might seem like a desired result but in reality our model
is not that perfect. As a cross-check the same measurements
were done on a subset of tickets from the category ’Crypto’
to test for instances where the classifier triggered on key-
words belonging to the ’DNS’ category. The investigation
showed the Cosine and Dice algorithms found a match with

Fig. 6. The distribution of categories in closed tickets.

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -39-

sometimes almost random words (see Tab. II and III for
example results). A solution to this problem was adjusting
the n-gram size. Fig. 7 shows performance of all considered
algorithms, where for Dice and Cosine used strings divided
into bigrams. With the change of the n-gram size to n = 2,
the performance of the first two algorithms dropped to values
closer to Levenshtein’s result. With the same n-gram config-
uration, the ratio of false positives is smaller for the first
two algorithms, that for the original one. The smallest and
highest false positives ratios are observed for the Cosine and
LCS algorithms, respectively (see Fig. 8). Hence, the LCS
algorithm was excluded from the further analysis. Adding
transpositions to the list of elementary operations did not
improved the performance, thus we do not proceed with
the Damerau algorithm. Increasing n-gram size gives an
improvement of only relative 4.2 %, thus we do not examine
higher values of n. A summary of measurements made for
tickets from the two most popular categories is given in Tab.
IV. Based on this measurement we decided to explore a
performance of the Cosine similarity algorithm.

TABLE II
EXAMPLE ’DNS’ MATCHES OF COSINE ALGORITHM, n-GRAM SIZE = 1.

TICKETS WERE TAKEN FROM THE ’DNS’ CATEGORY.

Keyword String matched Result, [%]
a record s record 88.88

cname setup please cont 83.33
a name ve nam 84.51

dns dns 100.00
dns modification pending is records for do domain ni 80.01

name server my name serv 80.40

TABLE III
EXAMPLE ’DNS’ MATCHES OF COSINE ALGORITHM, n-GRAM SIZE = 1.

TICKETS WERE TAKEN FROM THE ’CRYPTO’ CATEGORY.

Keyword String matched Result, [%]
a name ma gen 84.52

website not active p to ssl isnt active 80.00
website not active ted ssl certificat 80.00
website not active to enable ssl certi 82.81

name server e requireme 81.79
dns modification pending p and now the domain settin 84.68

Fig. 7. The plot corresponds to a 200 closed tickets tagged as a ’DNS’
category. Orange colour corresponds to enquiries matched as a DNS problem
(true positives) and grey corresponds to unmatched tickets (false negatives).
For Cosine and Dice: n-gram size is equal to 2.

Fig. 8. The plot corresponds to a 200 closed tickets tagged as a ’Crypto’
category. Orange colour corresponds to enquiries matched as a DNS problem
(false positives) and grey corresponds to unmatched tickets (true negatives).
For Cosine and Dice: n-gram size is equal to 2.

D. Choice of the best configuration

In this section we inspect the dependence of Cosine
similarity accuracy on its threshold, for distinct ’DNS’ false
positive matches. We scan the true and false positives ratios
as a function of tS , where threshold can obtain values: 0.0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,
0.65, 0.67, 0.7, 0.71, 0.73, 0.75, 0.77, 0.79, 0.81, 0.82, 0.83,
0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94,
0.95, 0.96, 0.97, 0.98, 0.99, 1.0. Fig. 9 shows that with the
growing similarity threshold, ratio of true positive matches
drops down. It is an expected behaviour because no model
can completely categorise every user-generated text input.
Simultaneously the percentage of misclassified tickets drops
(1-FP grows). The density of the above-mentioned tS values
grows for higher thresholds because this area is interesting
in terms of an intersection of this two functions. The point
where these functions cross tells us what threshold gives
us the smallest false positives ratio with the highest true
positives ratio. The same measurements were performed for
tickets from other categories included in our model. The
obtained intersection points are reported in Tab. V.

The optimal threshold value was calculated as a weighted
sum:

tSopt
=

∑
i

wi · tSi
/
∑
i

wi, (10)

where the sum runs over categories reported in Tab. V and
weights are equal to their contribution to the overall poll of

TABLE IV
TRUE (TP) AND FALSE (FP) POSITIVE MATCHES, AND THEIR RATIO.

’DNS’ AND ’CRYPTO’ TICKETS MATCHED FOR THE ’DNS’ CATEGORY.

Algoritm n TP, [%] FP, [%] FP/TP

Cosine
1 100.0 99.0 0.99
2 89.0 21.0 0.24
3 81.5 19.0 0.23

Dice
1 100.0 98.0 0.98
2 89.5 21.5 0.24
3 88.0 20.0 0.23

Damerau 92.5 26.5 0.29
LCS 93.5 32.0 0.34

Levenshtein 92.5 26.5 0.29

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -40-

Fig. 9. The orange line corresponds to the true positives (TP) ratio and the
grey one to the distance from unity of the false positives ratio for tickets
matched as ’DNS’. The black dot marks the intersection point of these two
lines. TP and FP were calculated using tickets from the ’DNS’ and ’Crypto’
categories, respectively.

TABLE V
INTERCESSION POINTS OF TP AND 1-FP FOR TICKETS TRIGGERED ON

KEYWORDS FROM THE ’DNS’ CATEGORY.

Ticket category Threshold
Crypto 0.87

Account 0.83
Abuse 0.74
Errors 0.83

tickets (Fig. 6). As a result, the optimal similarity threshold
is tSopt = 0.84. We calculated the FP/TP ratio using ’DNS’
and ’Crypto’ tickets triggered on the ’DNS’ category with
the Cosine similarity algorithm on text strings tokenised into
sets of bigrams with threshold equal to tSopt

. The resulting
ratio is 24.4%, where in the original configuration it was
equal to 28.7%.

IV. CONCLUSION

We have presented measurements and comparison of
various chosen algorithms using a keyword search based
classification system. We showed that with a simple tune of
the algorithm’s parameters it is possible to obtain satisfying
results. We found the Cosine algorithm to have the best
results in our use-case and by increasing n-gram size from
1 to 2, we found an approach more optimal to other consid-
ered. Additionally, the total cost of the similarity algorithm
dropped from O(k · l) (for the Levenshtein algorithm) to
O(k + l). Since the optimal approach requires less rounds
of processing, it allows for more computationally efficient
processing of bigger text strings.

We have estimated an optimal configuration for the Cosine
similarity approach, tuned to our most frequent ticket cate-
gory. The improvement was estimated using a ratio of true
positive and false positive matches using tickets from our two
most popular categories. We have achieved a performance
improvement of a relative 15.0%. Nevertheless, building an
automatic key phrase extraction system is a process that
requires continuous improvement. Automatic classification
of support tickets is a complex problem and there is still
much to explore.

REFERENCES

[1] Lyubinets, V., Boiko, T., Nicholas, D., “Automated labeling of bugs
and tickets using attention-based mechanisms in recurrent neural net-
works,” 2018 IEEE Second International Conference on Data Stream
Mining & Processing (DSMP) pp. 271 - 275, August 2018

[2] Weerasooriya, T., Perera, N., Liyanage, S., “A method to extract
essential keywords from a tweet using NLP tools,” 16th Interna-tional
Conference on Advances in ICT for Emerging Regions (IC-Ter), pp.
29-34, September 2016

[3] Han, J., Goh, K. H., Sun, A., Akbari, M., “Towards Effective Extrac-
tion and Linking of Software Mentions from User-Generated Support
Tickets,” Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM ’18, pp. 2263-2271,
October 2018

[4] D’Angelo, J. P., West, D. B., “Mathematical Thinking: Problem-
Solving and Proofs,” pp. 277-279, Prentice Hall, 1997, ISBN:
0130144126

[5] Ukkonen, E., “Approximate string-matching with q-grams and maxi-
mal matches,” Theoretical Computer Science, vol. 92, no. 1, pp. 191-
211, January 1992

[6] Wagner, R. A., Fisher, M. J., “The string-to-string correction problem,”
J. ACM, vol. 21, no. 1, pp. 168-173, January 1974

[7] Kondrak, G., “N-Gram Similarity and Distance,” Proceedings of the
12th international conference on String Processing and Information
Retrieval, pp. 115-126, November, 2005

[8] Larsen., K. S., “‘Length of Maximal Common Subsequences,” DAIMI
Report Series. 21., November 1998

[9] C. D. Manning, “‘Introduction to Information Retrieval,” pp. 109-134,
Cambridge University Press, 2008, ISBN: 0521865719

[10] Salton, G., Wong, A., Yang, C.S, “A Vector Space Model for Auto-
matic Indexing,” ACM, vol. 18, no. 11, pp. 613-620, November 1975

[11] Yujian, L., Bo, L. “A Normalized Levenshtein Distance Metric,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29 ,
no. 6 , pp. 1091-1095, June 2007

[12] Marzal, A., Vidal, E., “Computation of normalized edit distance and
applications,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 9, pp. 926-932, September 1993

[13] Mays., E., Damerau, F. J., Mercer, R. L., “‘Context Based Spelling
Correction,” Information Processing and Management, vol. 27, no. 5,
pp. 517-522, September 1991

[14] Fielding, R., Reschke, J., “‘Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content,” RFC 7231, June 2014

[15] Freier, A., Kralton, P., Kocher, P., “‘The Secure Sockets Layer (SSL)
Protocol Version 3.0,” RFC 6101, August

[16] Mockapetris, P., “‘Domain names - concepts and facilities,” RFC 1034,
November 1987

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -41-

