Is Clove Oil a Viable Alternative to MS-222 for Anesthesia In Fish Species?

Alex Evans
PharmD Candidate
UNC Eshelman School of
Pharmacy

Objectives

- Discuss the principles of surgical anesthesia in fish
- Provide an overview of the phamacotherapy of MS-222 and clove oil
- Discuss advantages and limitations of both agents
- Evaluate the literature regarding the use of clove oil in comparison to MS-222 in fish species
- Provide recommendations regarding the current dilemma

What is a

"fish"?

Teleosts: true bony fish

Elasmobranchs: sometimes called "fish"

Not fish - invertebrates!!

Why anesthesia in fish?

- Fisheriesscience/research
- Pet fish
- Aquaculture
- Zoo and aquarium medicine

Tufts University, 2010

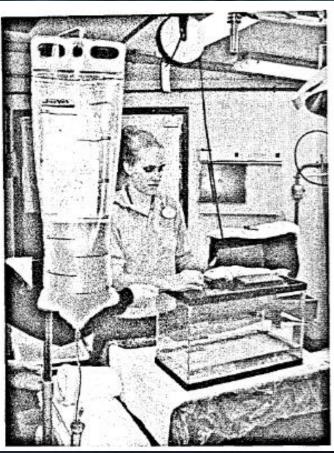
Gas Exchange Strategies

- Ram ventilation fish must continually move water over its gills for oxygen exchange (tuna)
- Buccal Pumper fish is capable of forcing water into its mouth and over gills for oxygen exchange (nurse shark)
- Aquatic surface respiration skims air-water surface for additional oxygen (mullet)
- Accessory respiratory organs allows the use of atmospheric air (Dipnoi, or "lungfish")

Neiffer et Al. 2009 Domenici et Al.

Species differences in anesthesia strategies

- Species that rely entirely on dissolved oxygen will have faster induction rates
- Species that rely heavily on atmospheric oxygen might suffocate if given the traditional setup
 - Need to be on a moist substrate during surgery and recovery



Neiffer et Al. 2009

Procedure

Non-recirculating and recirculating systems

Stages of Anesthesia and Recovery

Stages of Anesthesia:

- I Onset of erratic opercular movement
- II Partial loss of equilibrium; continued efforts to right itself
- III Total loss of equilibrium; no efforts to right itself
- IV Induction; total loss of voluntary movement and reactivity
- V Medullary collapse; total cessation of opercular movement

Stages of Recovery:

- I -Reappearance of opercular movement
- II Partial recovery of equilibrium; efforts to right itself
- III Full recovery of e equilibrium; successful righting
- IV Response to external stimuli
- V Behavioral recovery; normal swimming activity

Monitoring

- Respiratory rateDependent on ventilation strategy
- Heart rate
- Temperature, DO, pH
- Ammonia levels

Doppler sonography to measure HR in *Apalone* spinifera

Neiffer et Al. 2009

Therapeutic Options: MS-222

- Only FDA-approved anesthetic
- Only available agent in food animals
 - 21-day withdrawal time
- Chemical name: Tricaine methanesulfate
 - Parent compound: benzocaine
- MOA: Sodium channel blocker
- Dosage range: 10-250 mg/L, depending on species
- Adverse effects: respiratory depression,
 hyperglycemia, hyperkalemia, polycythemia

Sladky et Al. 2001 www.ivis.org Coyle et Al. 2004

Therapeutic Options: Clove Oil

- NOT FDA approved
- Active ingredients: isoeugenol, eugenol, methyleugenol
 - Aqui-S: standardized product approved in Australia,
 Chile, New Zealand, Korea, Costa Rica and Honduras
 with zero withdrawal time
- Mix clove oil 1:10 with 95% ethanol to yield a 100mg/mL solution
- MOA: Unknown
- Dosage range: 2-200mg/L, depending on species
- Adverse effects: respiratory depression, hyperglycemia, hyperkalemia, polycythemia

FDA CVM Comments

- Clove oil is not standardized
- Neither clove oil or any of its components are being studied under a NADA
- Carcinogenicity unknown
- Concerns over food supply
- Ecosystem concerns

Other Therapeutic Options

- Benzocaine
- Medotomidate
- 2-Phenoxyethanol
- Quinaldine/Quinaldine Sulfate
- Azaporene
- Isoflurane/Halothane
- Oxygen (Elasmobranchs)

The Efficacy of Clove Oil as an Anesthetic for the Zebrafish, *Danio Rerio*

Overview

- 1200 zebrafish
- 1-month old, all sexually immature
- Housed in ten 50L aquaria
 - ○24+/-2° C
 - 013 L:11 D
- Study arms:
 - ○**MS-222**: 100,120, 140, 160, 180, 200ppm
 - o Eugenol: 60, 80, 100, 120, 140ppm

Study Design

Ten zebrafish randomly selected and placed into 20L experimental aquarium

Time to stage 3 or 4 anesthesia recovery measured

Time to stage 4 and 5 anesthesia recorded. Fish removed and placed in recovery tank once stage 5 anesthesia reached. Process repeated 3x for all concentrations of **MS-222** and eugenol

Study Design

Fish used in experiment were left in recovery tank for one day, then transferred back to the recovery holding tank for a 14-day period.

Abnormal behaviors and mortality during this 14-day period were recorded

Other studies:

- 96h LD₅₀ for eugenol
- Ethanol exposure effects over 96 hours

Results

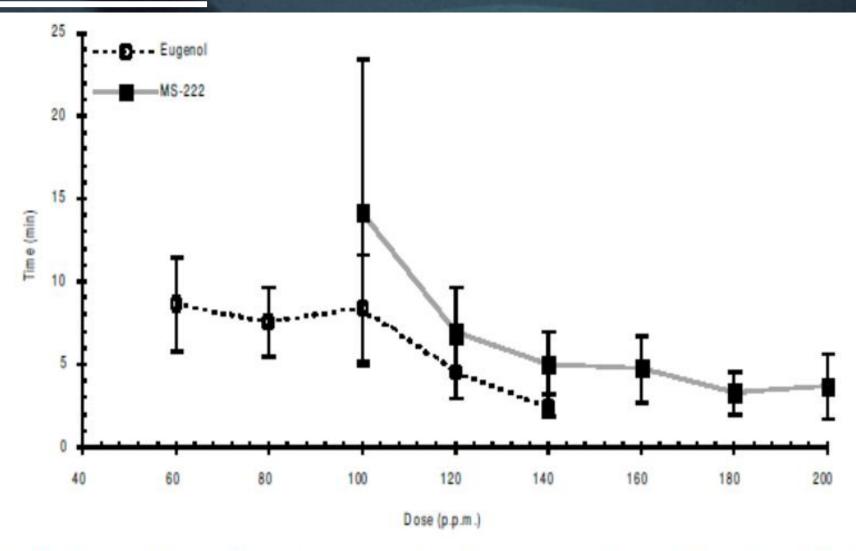


FIG. 3. Time required for zebrafish to achieve stage 5-anesthesia at various concentrations of clove oil and MS-222. Data points represent the mean \pm SEM, n = 10.

Results

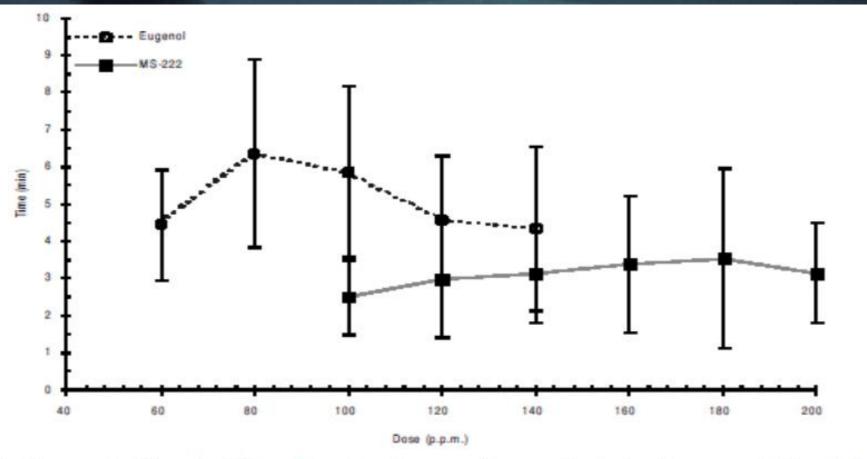


FIG. 4. Time required for zebrafish to achieve stage 3-recovery from anesthesia at various concentrations of clove oil and MS-222. Data points represent the mean \pm SEM, n = 10.

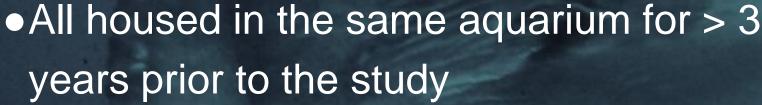
• Ethanol exposure effects: All fish exposed to 1400ppm ethanol over 96 hours survived

Conclusions

- Induction times were faster and at lower concentrations with eugenol than MS-222
- Recovery times were prolonged with eugenol
- Times to induction were concentrationdependent

Limitations

- Only studied in the zebrafish
- No physiologic parameters measured
- Stages of anesthesia and recovery are not



Comparative Efficacy of Tricaine Methanesulfate and Clove Oil for Use as Anesthetics in Red Pacu

Overview

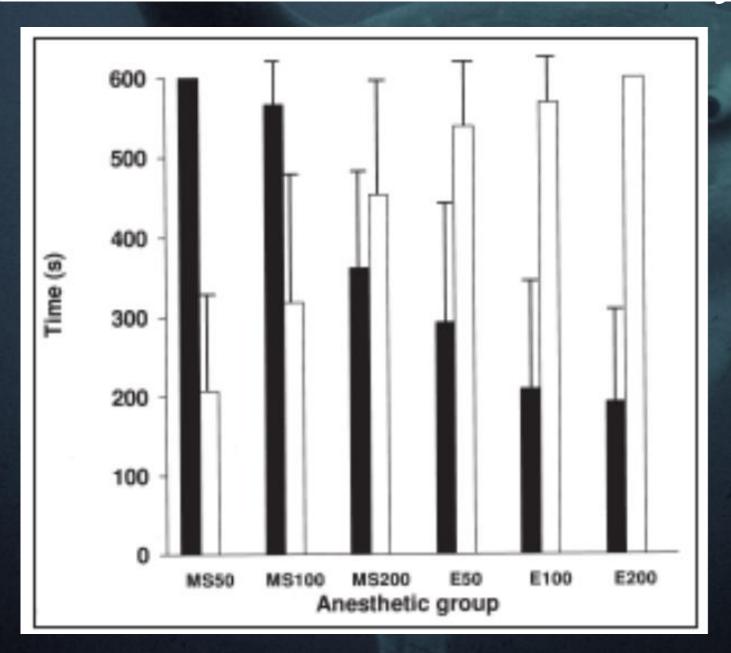
- 15 captive-raised red pacu
- All approximately 4 years old

- Study arms:
 - oMS-222 (50, 100, 200mg/mL)
 - Eugenol (50, 100, 200mg/L)
- Within-subjects complete crossover design

Study Design

- Each fish housed separately in a 60L aquarium during the study period.
- Baseline respiratory rate observed in its home aquarium
- Fish removed from aquarium, blood sample#1 taken

Fish placed in 4L water in 8L plastic bag, fish allowed to acclimate for 2-3 minutes.
Second baseline RR recorded.


Anesthetic added. Fish removed from tank and blood sample #2 taken when: a) Stage IV anesthesia reached b) 600 seconds had passed. Fish returned to home aquarium.

Resuscitation initiated if no opercular movement seen within 5 minutes of being returned to home aquarium

Study Design

- Behavioral reaction to needle measured as 0 (no observable reaction) and 1 (observable reaction
- Blood sample was collected from caudal artery or vein
- Labs obtained: Glucose, sodium, potassium, pH,
 PO₂, PCO₂, hematocrit, hemoglobin

Induction and Recovery Times

Physiologic Changes

Group	Glucose (mg/dl)	Sodium (mg/dl)	Potassium (mg/dl)	pH	(prem Hg)	PcO2* (mm Hg)	Hot (%)	Hemoglobin (g/dl)
MS 50								
Before	56.9 ± 12.0	140.2 ± 5.6	2.2 ± 0.6	7.75 ± 0.05	26.1 ± 20.7	4.4 ± 0.6	18.5 ± 2.5	6.1 ± 0.9
Duting	76.1 ± 16.4	143.5 ± 2.6	3.2 ± 0.4	7.49 ± 0.13	7.7 ± 4.5	7.7 ± 1.9	20.5 ± 2.6	6.9 ± 1.0
Change (%)	$+24.6 \pm 8.6$	$+1.9 \pm 3.0$	$+28.3 \pm 21.8$	-3.3 ± 1.4	-55.4 ± 33.9	+39.2 ± 17.8	$+9.7 \pm 10.1$	$+10.0 \pm 12.6$
MS 100								
Before	58.7 ± 7.4	140.9 ± 4.3	2.6 ± 0.5	7.74 ± 0.11	24.1 ± 26.2	4.3 ± 0.9	18.9 ± 3.1	6.3 ± 1.1
Duting	74.9 ± 14.9	142.1 ± 3.3	3.1 ± 0.3	7.44 ± 0.11	3.9 ± 0.7	9.1 ± 3.0	20.9 ± 2.9	7.3 ± 1.2
Change (%)	$+19.4 \pm 15.7$	$+0.9 \pm 2.4$	$+15.8 \pm 14.7$	-3.9 ± 1.2	-65.5 ± 26.8	$+48.1 \pm 18.0$	$+9.1 \pm 11.3$	$+10.3 \pm 12.9$
MS 200								
Before	58.7 ± 11.9	140.9 ± 3.5	2.5 ± 0.5	7.72 ± 0.06	26.8 ± 22.5	4.6 ± 1.1	20.3 ± 3.8	6.9 ± 1.4
During	73.4 ± 15.5	141.8 ± 4.3	3.1 ± 0.4	7.45 ± 0.10	3.93 ± 0.7	8.6 ± 1.3	22.7 ± 3.0	7.7 ± 1.0
Change (%)	$+19.1 \pm 9.8$	$+0.6 \pm 1.5$	$+18.2 \pm 11.5$	-3.5 ± 0.8	-76.3 ± 14.5	$+46.1 \pm 7.9$	$+10.8 \pm 10.1$	$+10.8 \pm 11.8$
E 50								
Before	56.0 ± 7.7	141.4 ± 3.0	2.4 ± 0.4	7.73 ± 0.06	25.2 ± 16.6	4.4 ± 0.8	18.9 ± 3.1	6.3 ± 1.1
Duting	76.8 ± 15.0	143.1 ± 4.9	3.3 ± 0.3	7.41 ± 0.05	3.5 ± 0.5	8.9 ± 1.0	21.4 ± 2.8	7.2 ± 1.1
Change (%)	$+25.7 \pm 10.0$	$+1.2 \pm 1.7$	$+27.2 \pm 12.0$	-4.2 ± 0.6	-77.8 ± 15.8	$+50.4 \pm 9.3$	$+16.0 \pm 11.7$	$+15.9 \pm 13.9$
E 100								
Before	58.7 ± 12.7	140.1 ± 5.4	2.2 ± 0.4	7.75 ± 0.06	33.1 ± 36.8	4.1 ± 0.4	19.0 ± 3.2	6.3 ± 1.1
During	72.3 ± 20.3	143.3 ± 3.3	3.5 ± 0.3	7.44 ± 0.09	3.93 ± 1.0	8.4 ± 1.7	20.6 ± 3.1	7.1 ± 1.1
Change (%)	$+17.2 \pm 9.9$	$+2.2 \pm 4.0$	$+35.2 \pm 13.1$	-4.0 ± 1.1	-73.1 ± 28.5	$+49.4 \pm 10.7$	$+7.0 \pm 14.8$	$+9.9 \pm 13.5$
E 200								A STATE OF THE STATE OF
Before	55.2 ± 5.7	141.8 ± 1.9	2.5 ± 0.5	7.81 ± 0.30	20.8 ± 23.97	4.6 ± 0.9	20.1 ± 3.2	6.7 ± 1.0
During	66.0 ± 10.7	141.5 ± 3.7	3.5 ± 0.4	7.50 ± 0.08	5.2 ± 2.1	$7A \pm 1A$	19.3 ± 2.1	6.3 ± 0.6
Change (%)	$+15.2 \pm 10.3$	-0.3 ± 2.5	$+28.4 \pm 13.0$	-3.8 ± 3.2	-59.4 ± 26.9	+37.7 ± 13.2	-4.8 ± 17.8	-7.0 ± 17.7

Percentage change is indicated as an increase (+) or decrease (-) of values obtained before anesthesia, compared With values obtained during anesthesia. *The Po₂ and Po₀₂ values Were determined on mixed venous-afterial blood samples.

Response to Needle Puncture

Eugenol:

- ●50mg/L: 10/15
- ●100mg/L: 14/15 [6/15 resuscitated]
- •200mg/L: 14/15 [11/15 resuscitated]

MS-222:

- ●50mg/L: 8/15
- ●100mg/L: 3/15
- ●200mg/L: 1/15

Conclusions

- Margin of safety for eugenol was narrower
- Eugenol is less effective as an anesthetic
- Induction times are more rapid and recovery times are more prolonged with eugenol
- Physiologic changes were similar between

groups

Limitations

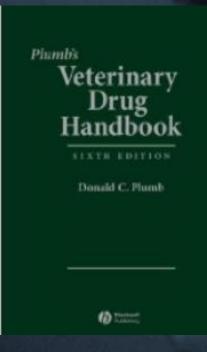
- Small trial
- Only studied in red pacu
- Incomplete data on resuscitation rates

Conclusions

- Thousands of species
- Efficacy of an agent in one species is not reliably extrapolated to another (ex. MS-222 in sturgeon)
- Must use MS-222 in food animals
- Consider any evidence available for that species or similar species
- Clove oil seems to be associated with prolonged recovery times and faster induction rates

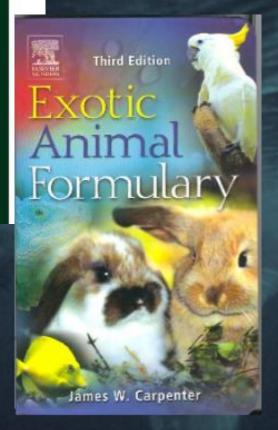
Pharmacy

Pearls


Veterinary Pharmacy Pearls

- Where do I learn how to give OTC advice to veterinary patients?
 - You can't! AMDUCA, 1994[www.fda.gov/cvm/s340.htm]
 - A valid veterinarian-client-patient relationship must be established
- Vetsulin: Porcine in origin
 - ○U40 Insulin
 - Separate syringes

Veterinary Pharmacy Pearls


- FARAD
 - CVM's website for withdrawal times in various species [www.farad.org]
- Some potentially inappropriate drugs in selected species:
 - Olvermectin turtles
 - Beta-lactams, erythromycin, clindamycin, tetracyclines - rabbits
 - Steroids birds
 - OWhen in doubt call the vet!!

Helpful Veterinary References

Exotic
Animal
Formulary

Plumb's

- Merck Veterinary Manual: www.merckvetmanual.com
- Tufts University Open Courseware: http://ocw.tufts.edu
- Walgreen's Online CE
- www.ivis.org

Some commonly encountered drugs in veterinary medicine

- Macrocytic lactones (heartworm preventives): Ivermectin, moxidectin, selamectin, milbemycin
- Melarsomine (Immiticide)
- NSAIDS: Carprofen (Rimadyl), flunixin (Banamine), meloxicam
- Otomax, Mometamax
- Flea Treatments: (S)-Methoprene, Fipronil
- Antibiotics: Enrofloxacin (Baytril), oxytetracycline, chloramphenicol, ceftiofur (Naxcel)
- Anti-parasitics: Pyrantel, praziquantel (Droncit), fenbendazole (Panacur)
- Nausea: Maropitant (Serenia)

References

- Plumb D. Veterinary Drug Handbook. Hoboken, NJ: Wiley-Blackwell; 2008.
- Carpenter J. Exotic Animal Formulary. Maryland Heights, MO: Saunders; 2004.
- Sladky K, Swanson C, Stoskopf M. Comparative efficacy of tricaine methanesulfonate and clove oil for use as anesthetics in red pacu. AJVR 2001; 62(3):337-42.
- Grush J, Noakes DLG, Moccia RD. The efficacy of clove oil as an anesthetic for the zebrafish, *Danio Rerio* (Hamilton). Zebrafish 2004; 1(1):46-53.
- Neiffer D, Stamper A. Fish sedation, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR 2009; 50(4): 343-360.
- Domenici P, Lefrancois C, Shingles A. Hypoxia and the antipredator behaviours of fishes. *Phil. Trans. R. Soc. B* (2007); 362: 2105–2121.
- Food and Drug Administration. Concerns related to the use of clove oil as an anesthetic for fish. Accessed at
 www.fda.gov/downloads/AnimalVeterinary/GuidanesComplianceEnforcement/GuidanesIonIndustry/ucm052520.pdf

 Feb 10, 2010.
- Lewbart G. Fish Anesthesia. Accessed at www.ivis.org on February 10, 2010.
- Coyle S, Durborow R, Tidwell J. Anesthetics in aquaculture. Souther Regional Aquaculture Center 2004: Publication # 3900.
- Thompson J. A practical guide to contemporary pharmacy practice. Philadelphia:Wolters-Kluwer Health; 2009.
- Huang J. Veterinary therapeutics for community pharmacists volume 1. Accessed at https://webapp.walgreens.com/cePharmacy/ Feb 14, 2010.
- Tufts university open courseware. Accessed at http://ocw.tufts.edu/Schools Feb 14, 2010.

Image References

- http://www.lrn.usace.army.mil/op/cor/rec/images/fish/striped_bass.jpg
- http://animalworld.com/encyclo/marine/butter/images/RaccoonButterflyfishWMBu_C744.jpc
- http://static.zsl.org/images/originals/3-manta-ray-2336.jpg
- http://scrapetv.com/News/News%20Pages/Everyone%20Else/images-4/Great-White-Shark-3.jpg
- http://www.richardseaman.com/Underwater/Belize/StillLifes/ReticulatedStarfish.jpc
- http://blogs.menmedia.co.uk/old/worldcup/jellyfish.jpg
- http://www.aguariumfish.net/images_01/oranda_choco_pompom_w270.jpg
- http://johneaves.files.wordpress.com/2009/06/mola_mola2.jpg
- http://www.coolscienceexperimentsforkids.com/wordpress/wpcontent/uploads/2009/11/south_american_lungfish.jpg
- http://www.koi-ponds-care.co.uk/Images/Koi-PondTypes1.jpg
- http://www.aquariacentral.com/pictures/pacu4.jpg
- http://mi.eng.cam.ac.uk/research/projects/Query/img/arrow.png
- http://blogs.nature.com/nm/spoonful/zebrafish.jpg

Questions????

