WY desioner

The Economics of
Macros

On Friday afternoon, we receive a call from the Office of the Vice President
of Instruction. They have a text file of the school’s credit class schedule,
downloaded from Banner—the school’s administrative database—

and would like a finished proof for review before the end of the day.

To create the proof, we need to edit the document to conform

to our school’s style, clean up the file’s numerous formatting
problems, and flow it into QuarkXPress, applying
stylesheets throughout.

No problem—just minutes after we
receive the call, we have
a proof ready for the client.

Sound implausible?
Not if you employ macros.

By Dana Martin

Birth of a Macro

By definition, publications departments are constrained by the
need to meet deadlines. With short turnaround times, we often
focus simply on getting jobs out the door. During a job’s
production, we don’t have time to experiment with new
processes, even if such experimentation could result in a
better workflow. And once the job is completed, we're on the
next project with little time to reflect on the one we've just
finished. In my case, | had written a few simple macros before
| worked at Johnson County Community College (JCCC), and
I knew how helpful they could be. Yet | let three years pass
before writing a macro for the credit schedule.

One reason for this delay stemmed from the fact that | was always
in-a mad rush during production, and once the job was sent to the
printer, | didnt want to think about it again. In addition, the task of
writing macros for the schedule simply seemed too daunting. First,
the download itself was huge, more than 100 pages in length.

| knew that to effectively create macros for a job this size,

| would have to do a great deal of planning, organizing, and
troubleshooting. Also, | knew | would have to review the
process of creating macros before | could even get started.
Every semester, as my wrist ached from making so many
manual changes, | told myself it was easier than writing
macros or that I'd get around to the macros “sometime.”

That time came last spring, after we received our download as
usual, and the designer and | spent about a week working on
the first proof. The proof went to the client and came back with
more than 1,000 changes marked on it. Somewhere along the
line, our process had fallen apart. Information from several
academic areas had been entered into Banner incorrectly

or not at all, resulting in countless handwritten updates.

We decided to scrap the proof and all our work on it. We asked
the academic areas to key their changes directly into Banner,
after which we would start over with a new download. By the
time we got that download, our print deadline was only a few
days away, and the designer and | had to start from scraich

on the piece. How easy it would have been if we'd only had
macros. We wouldn't have wasted so much time editing and
formatting a download that ultimately was discarded, and we
wouldn't have had to redo all our work with only days left in
our production schedule.

That's when | knew what | had to do. Now, in addition to having
fully functional macros for the credit schedule, | have also
written macros for another catalog and am in the process of
creating them for the continuing education schedule.

Creating a Macro

A macro, short for “macroinstruction,” is simply a series of
commands grouped under one name. The macros addressed
in this article are written in Microsoft Word using Visual Basic
for Applications, a component of the Word application. Macros
improve the functionality of Word, allowing you to tailor the
application to your needs. For instance, you can use macros to
combine all your global search and replace commands into
one action. As with any find and replace command, you can
use macros to search for characters, format symbols, or a
combination thereof. You can also use wild cards. Macros can
be written to execute other instructions as well, such as saving
a file after changes are made. And, rather than writing one
monstrous macro for large projects, you can apply a series of
smaller macros, which will ease future macro maintenance and
keep your macros from becoming unwieldy.

Macros are created in one of two ways: either by recording
keystrokes or by working directly in Visual Basic. If you don’t
want to delve into YBA programming, simply record your
macros by choosing Macro | Record New Macro from the
Tools menu. A dialogue box will prompt you to name the macro
and specify where you want to save it (on Macs, the global
template is the default setting; on PCs, the default is
normal.dot). A recording toolbar will appear on your screen. As
you execute the commands you want included in your macro,
your keystrokes are translated into VBA code. To stop
recording, click stop on the recording toolbar. The code is now
saved under the assigned macro name. You can retrieve and
run the macro whenever you need it by choosing Tools |
Macro | Macras, selecting the macro you want to use from the
Macro Name scroll box and clicking Run. You can also create
toolbars for your macros or assign keyboard commands to
execute them.

If you prefer, you can edit the macro in Visual Basic Editor,
which allows you to review and modify the code translation of
your recording. To edit your macro, select Macro | Macros
from the Tools menu, then highlight the name of the macro you

departments are

constrained by

7

wieet deadliniea
Heer aeqaaiines.

macros on tne

o s T o s R
allowed our office
to shave our

PRI ARt e frat () AP T
Proaiic fron timu

wish to edit and click the Edit button in the dialogue box. In
Visual Basic, you can simplify and clean up code, as well as
remove mistakes. The VBA code is easy to read once you are
familiar with it. You should quickly relate the keystrokes you
recorded with the resulting VBA translation.

The first macro | run on a document addresses format issues
(.g.. two tabs where | only want one). The second addresses
style (e.g., 5 p.m. instead of 5:00 p.m.). The third applies tags
(e.g., @head:). This macro is the easiest to create and is the
most beneficial from a design standpaint. Once |'ve applied all
the macros, | perform the following steps:

1. Save the document as a .ixt file.

2. Open QuarkXPress.

3. Select “Get Text.”

4. Check “Import Stylesheets” in the dialog box.

5. Select my .ixt. file.

In moments, the entire document flows into Quark. It's has
been substantially edited, all formatting idiosyncrasies have
been eradicated and QuarkXPress has translated the tags |
applied into the correct stylesheets.

Macros: The Good, the Bad

and the Ugly

Beneath their pretty exteriors, many macros are riddled with
ugly little secrets. The macro recorder follows your every
keystroke, right or wrong, and interprets your actions to a tee.
This specificity can result in the insertion of extraneous or
incorrect lines of code. But the real inner beauty of macros is
that the code doesn't have to be flawless to be functional.

For example, if you include instructions for finding “&” and
replacing it with “and,” but there are no instances of “&” in your
document, the macro’s performance will not be compromised.
Likewise, the extraneous lines of code the recorder inserts
won't harm the macro—but they will slow it down.

Another benefit of macros is their flexibility. You can customize
them to your project and work style, use them minimally or
extensively, and update them when needed. If you write more
than one macro for a document, you can even write a macro
that runs all your macros in the desired order. But the most
important benefit is that, with repetitive tasks out of the way,
macros allow you address more sophisticated editorial and
design issues on your documents.

In spite of their near-miraculous attributes, macros do have a
downside: they can have a steep learning curve, especially if
you aren’t familiar with Visual Basic or another programming
language. To get started, take a look at books on Word macros
and VBA. Next, record a simple macro and build from there.
Don't try to write macros for a document when you are short on
time. | began working on the macros for the credit class
schedule three months before | received the download for the
upcoming semester. That relaxed time frame allowed me to
experiment with my macros—and make a few mistakes—
without the pressure of imminent deadlines. Next, and certainly
before you tackle complicated or lengthy documents that
require more elaborate macros, create a game plan. Careful
planning and logical arrangement of your code will ensure a
beneficial long-term relationship between you and your
macros. Finally, be ready for experimentation and great deal of
trial and error.

Tips for Trouble-free Macros

Always back up your macros. When you write a macro, it will
reside in your global template, in a specific template or in a
specific document. Back up these template files whenever you
modify your macros. If a template becomes corrupt, you will
lose the macros stored inside that template. To back up a
macro, simply copy the template in which you have created the
macro, then save the copy to your hard drive or a network.
Naming the template by date will allow you to easily identify the
most current backup and revert to an earlier version if
necessary. Because macros have become an integral part of
my work process and | never want to be left in a lurch if one
fails, | save my dated backup files on my hard drive as well as
the network, and periodically | burn them to a CD.

Test, test, test. Ever do a search and replace for a term—
“and” o “&,” for example, only to realize you've replaced every
instance of “and” in your document? You now have ‘“l&scape”
design classes, a seemingly r&om change you hadn't intended.
If you have such results with one search and replace
command, imagine the problems that can arise when stringing
dozens of commands together. You need to test drive your
macro to find and correct these unanticipated results.

To ease the process of testing a new macro, especially on a
long document, | turn to Word’s Track Changes feature. Before
testing the results of a macro, | choose Tools | Track Changes.

I then select Track Changes While Editing from the dialogue
box, click on the preferences button and specify that changes
be marked in red and replaced copy be hidden. These
preferences allow the macro to perform properly without altering
its functions. Next, | run the macro | want to test. The red marks
that appear in the document allow me to quickly and clearly see
successful changes as well as unintended ones. Running a
macro while tracking changes also allows you to see what
wasn't changed but should have been. You can then return to
the macro and review the problem areas in your code.

In the End, What's a Macro’s

Net Worth?

To put all of this in tangible terms, using macros on the credit
class schedule has allowed our office to shave our production
time on the credit schedule from more than two months to less
than 10 days. Within minutes, we can create “throw-away”
proofs for our academic departments to review. By “throw-
away,” | simply mean we don’t need or want the proof back.
The academic areas can use the proofs to spot problems and
correct them directly in Banner. Once these changes are made
in Banner, the Information Services department creates a new
download, and we can again apply the series of macros to do
the lion’s share of the work on the document. We no longer
spend valuable time with rote editorial and layout tasks. Now,
we minimize our time spent on the document until a few days
before the file is due at the printer. At that point, | read through
the document for clarity, awkward syntax and other problems
a macro can't address, and the designer finesses the layout.
And best of all, my wrist doesn’t hurt anymore.

Suggested Reading
Hart-Davis, Guy. Word 97 Macro & VBA Handbook. San
Francisco: Sybex, 1997.

Leonhard, Woody, Lee Hudspeth, and T.J. Lee. Word 97 Macro
Annoyances. Sebastopol, CA: O'Reilly & Associates, 1997.

Roman, Steven. Writing Word Macros: An Introduction to
Programming Word Using VBA. Sebastopol, CA. O'Reilly
& Associates, 1999.

. P S,

ACADEMIC ACHIEVEMENT CEN'

RAC10) - SRABY SHISY

i
|

On the left: the
downloaded text file

for the school’s credit

schedule.

Above: The file as it
appears about four
minutes later, after
applying our credit
schedule macros to
the text file.

About the Author
Dana Martin is College
Information writer/editor at
Johnson County Community
College, Overland Park, KS.
She has a bachelor’s degree
in English with a dual major
in language and fiterature,
as well as creative writing/
Journalism from the
University of Missouri-
Kansas City.

